428 research outputs found

    Distributed Algorithms for Spectrum Allocation, Power Control, Routing, and Congestion Control in Wireless Networks

    Full text link
    We develop distributed algorithms to allocate resources in multi-hop wireless networks with the aim of minimizing total cost. In order to observe the fundamental duplexing constraint that co-located transmitters and receivers cannot operate simultaneously on the same frequency band, we first devise a spectrum allocation scheme that divides the whole spectrum into multiple sub-bands and activates conflict-free links on each sub-band. We show that the minimum number of required sub-bands grows asymptotically at a logarithmic rate with the chromatic number of network connectivity graph. A simple distributed and asynchronous algorithm is developed to feasibly activate links on the available sub-bands. Given a feasible spectrum allocation, we then design node-based distributed algorithms for optimally controlling the transmission powers on active links for each sub-band, jointly with traffic routes and user input rates in response to channel states and traffic demands. We show that under specified conditions, the algorithms asymptotically converge to the optimal operating point.Comment: 14 pages, 5 figures, submitted to IEEE/ACM Transactions on Networkin

    Asymptotically Optimal Multiple-access Communication via Distributed Rate Splitting

    Full text link
    We consider the multiple-access communication problem in a distributed setting for both the additive white Gaussian noise channel and the discrete memoryless channel. We propose a scheme called Distributed Rate Splitting to achieve the optimal rates allowed by information theory in a distributed manner. In this scheme, each real user creates a number of virtual users via a power/rate splitting mechanism in the M-user Gaussian channel or via a random switching mechanism in the M-user discrete memoryless channel. At the receiver, all virtual users are successively decoded. Compared with other multiple-access techniques, Distributed Rate Splitting can be implemented with lower complexity and less coordination. Furthermore, in a symmetric setting, we show that the rate tuple achieved by this scheme converges to the maximum equal rate point allowed by the information-theoretic bound as the number of virtual users per real user tends to infinity. When the capacity regions are asymmetric, we show that a point on the dominant face can be achieved asymptotically. Finally, when there is an unequal number of virtual users per real user, we show that differential user rate requirements can be accommodated in a distributed fashion.Comment: Submitted to the IEEE Transactions on Information Theory. 15 Page

    Tiny Codes for Guaranteeable Delay

    Full text link
    Future 5G systems will need to support ultra-reliable low-latency communications scenarios. From a latency-reliability viewpoint, it is inefficient to rely on average utility-based system design. Therefore, we introduce the notion of guaranteeable delay which is the average delay plus three standard deviations of the mean. We investigate the trade-off between guaranteeable delay and throughput for point-to-point wireless erasure links with unreliable and delayed feedback, by bringing together signal flow techniques to the area of coding. We use tiny codes, i.e. sliding window by coding with just 2 packets, and design three variations of selective-repeat ARQ protocols, by building on the baseline scheme, i.e. uncoded ARQ, developed by Ausavapattanakun and Nosratinia: (i) Hybrid ARQ with soft combining at the receiver; (ii) cumulative feedback-based ARQ without rate adaptation; and (iii) Coded ARQ with rate adaptation based on the cumulative feedback. Contrasting the performance of these protocols with uncoded ARQ, we demonstrate that HARQ performs only slightly better, cumulative feedback-based ARQ does not provide significant throughput while it has better average delay, and Coded ARQ can provide gains up to about 40% in terms of throughput. Coded ARQ also provides delay guarantees, and is robust to various challenges such as imperfect and delayed feedback, burst erasures, and round-trip time fluctuations. This feature may be preferable for meeting the strict end-to-end latency and reliability requirements of future use cases of ultra-reliable low-latency communications in 5G, such as mission-critical communications and industrial control for critical control messaging.Comment: to appear in IEEE JSAC Special Issue on URLLC in Wireless Network
    • …
    corecore